organic compounds

4782 measured reflections

 $R_{\rm int} = 0.120$

3221 independent reflections

2661 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2S)-Ethyl 2-[(S_s)-benzylsulfinylamino]-3.3-dimethylbutanoate

Wei Zheng,^a Xun Sun,^a* Jie Sun^b and Bang-Guo Wei^c

^aDepartment of Chemistry of Natural Drugs, School of Pharmacy, Fudan University, Shanghai 200032, People's Republic of China, ^bShanghai Institute of Organic Chemistry, Shanghai 200032, People's Republic of China, and ^cDepartment of Chemistry, Fudan University, Shanghai 200032, People's Republic of China Correspondence e-mail: sunxunf@shmu.edu.cn

Received 30 July 2008; accepted 8 September 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.134; data-to-parameter ratio = 17.0.

The title compound, C₁₅H₂₃NO₃S, is an unexpected 1,3migration product in the addition of benzylzinc bromide to Ntert-butanesulfinyl iminoacetate. In the crystal structure, molecules are linked by N-H···O hydrogen bonds and weak $C-H \cdots O$ hydrogen bonds.

Related literature

For general background, see: Ellman et al. (2002); Lin et al. (2008); Daniel & Stockman (2006). For the synthesis of the titled compound, see: Sun et al. (2008).

Experimental

Crystal data

C15H23NO3S $M_r = 297.40$ Monoclinic, P21 a = 11.166 (2) Å b = 7.1917 (14) Å c = 11.460 (2) Å $\beta = 115.473 (3)^{\circ}$

V = 830.8 (3) Å³ Z = 2Mo Ka radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 293 (2) K $0.49 \times 0.41 \times 0.17~\mathrm{mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.908, T_{\max} = 0.967$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$wR(F^2) = 0.134$	independent and constrained
S = 0.97	refinement
3221 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
189 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
2 restraints	Absolute structure: Flack (1983),
	1295 Friedel pairs
	Flack parameter: -0.09 (11)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7B \cdots O1$	0.96	2.61	3.234 (5)	123
$C9-H9B\cdots O3^{i}$	0.97	2.48	3.296 (5)	142
$N1 - H1A \cdots O3^{i}$	0.859 (17)	2.13 (2)	2.932 (3)	156 (3)

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + 1$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was financially supported by the National Science Foundation of China (grant No. 20772017) and the Shanghai Municipal Committee of Science and Technology (grant No. 07DZ19713).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2133).

References

Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Daniel, M. & Stockman, R. A. (2006). Tetrahedron, 62, 8869-89085.

Ellman, J. A., Owens, T. D. & Tang, T. P. (2002). Acc. Chem. Res. 35, 984-995. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Lin, G.-Q., Xu, M.-H., Zhong, Y.-W. & Sun, X.-W. (2008). Acc. Chem. Res. 41, 831-840.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sun, X., Zheng, W. & Wei, B.-G. (2008). Tetrahedron Lett. 49, 6195-6197.

Acta Cryst. (2008). E64, o1933 [doi:10.1107/S1600536808028717]

(2S)-Ethyl 2-[(S_s)-benzylsulfinylamino]-3,3-dimethylbutanoate

W. Zheng, X. Sun, J. Sun and B.-G. Wei

Comment

N-tert-Butanesulfinylamide has received considerable attention in the auxiliary-aided asymmetric synthesis of a broad range of chiral amines (Ellman *et al.*, 2002; Stockman *et al.*, 2006; Lin *et al.*, 2008). In our research on the asymmetric addition of organozinc reagents to chiral *N-tert*-butanesulfinyl iminoacetates, an unexpected rearrangement product was obtained instead of the desired nucleophilic addition product. The structure of the compound obtained by 1,3-migration of the *tert*-butyl group was determined to be (2*S*)-ethyl 3,3-dimethyl-2-((S_s)-benzylsulfinylamino)butanoate. The reaction sequence (Sun *et al.*, 2008) is briefly shown in Fig. 4. The absolute configuration at the sulfur atom (as determined by the Flack parameter) is *S* as in the starting material. The new chiral center at C1 also exhibits an *S*-configuration. We believe this unusual rearrangement reaction could be developed to be a novel and convenient approach to prepare *tert*-leucine.

The crystal packing in the title compound is stabilized by an intramolecular hydrogen interaction (C7—H7B···O1) and by two intermolecular hydrogen bonds (N1—H1A···O3ⁱ and C9—H9B···O3ⁱ, symmetry operator: (i) -x, y-1/2, -z+1) which lead to the formation of an one-dimensional hydrogen bonded chain along the b axis as shown in Fig. 3.

Experimental

To a solution of ethyl *N*-(*tert*-butanesulfinyl)iminoacetate (1 mmol) and Ni(acac)₂ (10 mol%) in anhydrous THF (10 ml) was added freshly prepared benzylzinc bromide (2.5 ml, 1 *M* in THF) at 195 K under an argon atmosphere. Then the mixture was allowed to warm to room temperature. After stirring for another 6 h, the reaction was quenched with saturated aqueous NH₄Cl (4 ml). The mixture was extracted with EtOAc (10 ml) twice. The combined organic phases were washed with brine and dried with anhydrous Na₂SO₄. After concentrating under reduced pressure, the residue was purified by silica gel chromatography to give the title compound (yield: 47%). Suitable crystals were obtained by recrystallization from acetone (m.p. 421–423 K). $[\alpha]_D^{25}$ 132.2 (c = 0.60, CHCl₃). ¹H NMR (δ , CDCl₃) 7.31-7.42 (*m*, 5H), 4.33 (*d*, *J* = 9.0, 1H), 4.12-4.20 (*m*, 2H), 4.03 (*s*, 2H), 3.48 (*d*, *J* = 9.0, 1H), 1.24 (*t*, *J* = 7.0, 3H), 0.83 (*s*, 9H). HRMS for (C₁₅H₂₃NO₃S) found 289.1469, Calcd 289.1477.

Refinement

Hydrogen atoms bonded to carbon were generated geometrically (C—H = 0.93, 0.98, 0.97 or 0.96 Å for phenyl, tertiary, methylene or methyl H atoms respectively) and refined in the riding model approximation. The hydrogen atom bound to the N atom was located from a difference density Fourier map, was refined isotropically and the N—H distance was restrained to 0.86 (2) Å. The displacement parameters of methyl H atoms were set to 1.5 times U_{eq} of the equivalent isotropic displacement parameters of their parent atoms, while those of other H atoms bound to C were set to 1.2 times U_{eq} .

Figures

(2S)-Ethyl 2-[(S_s)-benzylsulfinylamino]-3,3-dimethylbutanoate

Crystal data	
C ₁₅ H ₂₃ NO ₃ S	$F_{000} = 320$
$M_r = 297.40$	$D_{\rm x} = 1.189 {\rm ~Mg~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 1845 reflections
a = 11.166 (2) Å	$\theta = 3.4 - 23.9^{\circ}$
<i>b</i> = 7.1917 (14) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 11.460 (2) Å	T = 293 (2) K
$\beta = 115.473 (3)^{\circ}$	Prismatic, colorless
$V = 830.8 (3) \text{ Å}^3$	$0.49\times0.41\times0.17~mm$
<i>Z</i> = 2	

n

Bruker SMART APEX CCD area-detector diffractometer	3221 independent reflections
Radiation source: fine-focus sealed tube	2661 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.120$
T = 293(2) K	$\theta_{\text{max}} = 27.0^{\circ}$

φ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -11 \rightarrow 14$
$T_{\min} = 0.908, \ T_{\max} = 0.967$	$k = -8 \rightarrow 9$
4782 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0662P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.134$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.43 \text{ e} \text{\AA}^{-3}$
3221 reflections	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
189 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 1295 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.09 (11)
~	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.04167 (7)	0.26178 (12)	0.67424 (6)	0.0442 (2)
O1	0.3061 (3)	0.0339 (4)	0.5596 (3)	0.0741 (8)
02	0.4124 (3)	0.2630 (5)	0.6946 (2)	0.0696 (7)
O3	0.0313 (3)	0.3869 (4)	0.5670(2)	0.0665 (7)
N1	0.1252 (2)	0.0717 (4)	0.6804 (2)	0.0420 (6)
C1	0.2690 (3)	0.0814 (4)	0.7500 (3)	0.0397 (6)
H1	0.2901	0.1873	0.8094	0.048*
C2	0.3305 (3)	0.1206 (5)	0.6568 (3)	0.0501 (8)
C3	0.4801 (5)	0.3093 (8)	0.6131 (5)	0.0923 (17)
H3A	0.5348	0.2058	0.6108	0.111*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3B	0.4155	0.3353	0.5255	0.111*
C4	0.5613 (6)	0.4705 (9)	0.6677 (5)	0.108 (2)
H4A	0.5056	0.5775	0.6547	0.162*
H4B	0.6189	0.4900	0.6263	0.162*
H4C	0.6136	0.4516	0.7586	0.162*
C5	0.3281 (3)	-0.0954 (5)	0.8332 (3)	0.0478 (7)
C6	0.4791 (4)	-0.0865 (6)	0.8887 (4)	0.0681 (10)
H6A	0.5167	-0.1912	0.9445	0.102*
H6B	0.5099	0.0264	0.9371	0.102*
H6C	0.5057	-0.0892	0.8194	0.102*
C7	0.2792 (4)	-0.2720 (5)	0.7539 (4)	0.0649 (10)
H7A	0.3185	-0.3781	0.8076	0.097*
H7B	0.3039	-0.2702	0.6833	0.097*
H7C	0.1844	-0.2791	0.7206	0.097*
C8	0.2833 (4)	-0.0948 (6)	0.9414 (3)	0.0653 (10)
H8A	0.1882	-0.0909	0.9048	0.098*
H8B	0.3191	0.0124	0.9952	0.098*
H8C	0.3145	-0.2055	0.9924	0.098*
C9	-0.1205 (3)	0.1504 (5)	0.6172 (3)	0.0513 (8)
H9A	-0.1880	0.2455	0.5975	0.062*
H9B	-0.1384	0.0834	0.5380	0.062*
C10	-0.1293 (3)	0.0198 (5)	0.7130 (3)	0.0494 (8)
C11	-0.1140 (4)	-0.1679 (6)	0.7036 (4)	0.0664 (10)
H11	-0.1014	-0.2145	0.6340	0.080*
C12	-0.1169 (5)	-0.2890 (6)	0.7960 (5)	0.0895 (15)
H12	-0.1062	-0.4161	0.7885	0.107*
C13	-0.1357 (5)	-0.2210 (10)	0.8991 (5)	0.0940 (15)
H13	-0.1374	-0.3023	0.9615	0.113*
C14	-0.1515 (5)	-0.0390 (8)	0.9098 (5)	0.0903 (16)
H14	-0.1651	0.0056	0.9794	0.108*
C15	-0.1479 (4)	0.0835 (6)	0.8193 (4)	0.0702 (11)
H15	-0.1579	0.2101	0.8289	0.084*
H1A	0.102 (3)	0.001 (3)	0.614 (2)	0.049 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0470 (4)	0.0432 (4)	0.0420 (3)	0.0052 (4)	0.0189 (3)	0.0057 (4)
O1	0.0850 (19)	0.095 (2)	0.0564 (14)	-0.0256 (17)	0.0441 (13)	-0.0240 (15)
O2	0.0750 (16)	0.0817 (16)	0.0677 (13)	-0.0294 (18)	0.0455 (12)	-0.0137 (18)
O3	0.0640 (16)	0.0639 (16)	0.0641 (15)	0.0019 (13)	0.0206 (12)	0.0255 (13)
N1	0.0404 (14)	0.0454 (15)	0.0379 (12)	-0.0008 (11)	0.0146 (11)	-0.0041 (11)
C1	0.0383 (15)	0.0425 (17)	0.0387 (14)	-0.0046 (13)	0.0168 (12)	-0.0055 (13)
C2	0.0424 (17)	0.060 (2)	0.0489 (18)	-0.0037 (16)	0.0205 (14)	-0.0013 (16)
C3	0.098 (4)	0.119 (5)	0.086 (3)	-0.040 (3)	0.065 (3)	-0.019 (3)
C4	0.105 (4)	0.132 (5)	0.112 (4)	-0.035 (4)	0.070 (3)	0.001 (3)
C5	0.0499 (18)	0.0452 (17)	0.0415 (16)	0.0018 (15)	0.0132 (13)	-0.0001 (14)
C6	0.048 (2)	0.073 (2)	0.064 (2)	0.0088 (19)	0.0065 (17)	0.002 (2)

C7	0.067 (2)	0.048 (3)	0.067 (2)	0.0015 (18)	0.0159 (17)	-0.0079 (17)
C8	0.080 (3)	0.067 (2)	0.0490 (19)	0.004 (2)	0.0276 (18)	0.0121 (18)
C9	0.0421 (17)	0.065 (2)	0.0451 (16)	0.0087 (16)	0.0174 (14)	0.0066 (15)
C10	0.0369 (17)	0.059 (2)	0.0522 (18)	-0.0030 (14)	0.0190 (14)	0.0005 (15)
Cll	0.062 (2)	0.070 (3)	0.064 (2)	-0.0145 (19)	0.0243 (18)	-0.0035 (18)
C12	0.092 (4)	0.058 (3)	0.113 (4)	-0.018 (2)	0.038 (3)	0.011 (2)
C13	0.086 (3)	0.108 (4)	0.094 (3)	-0.021 (4)	0.044 (2)	0.033 (4)
C14	0.095 (4)	0.121 (5)	0.077 (3)	-0.006 (3)	0.057 (3)	0.012 (3)
C15	0.074 (3)	0.075 (3)	0.074 (2)	-0.001 (2)	0.043 (2)	-0.002 (2)
Geometric paran	neters (Å, °)					
S1—O3		1.487 (2)	C6—He	6C	0.960	00
S1—N1		1.639 (3)	С7—Н′	7A	0.960)0
S1—C9		1.824 (4)	С7—Н	7B	0.960	00
01—C2		1.201 (4)	С7—Н	7C	0.960	00
O2—C2		1.316 (4)	C8—H	3A	0.960	00
O2—C3		1.471 (4)	C8—H	3B	0.960	00
N1—C1		1.455 (4)	C8—H	3C	0.960	00
N1—H1A		0.859 (17)	С9—С	10	1.480) (5)
C1—C2		1.523 (4)	С9—Н9	9A	0.970	00
C1—C5		1.555 (4)	С9—Н9	ЭB	0.970	00
C1—H1		0.9800	C10—0	211	1.37	(5)
C3—C4		1.439 (7)	C10—0	215	1.398	3 (5)
С3—НЗА		0.9700	C11—C	212	1.382	2 (6)
С3—Н3В		0.9700	C11—H	I11	0.930	00
C4—H4A		0.9600	C12—C	213	1.375	5 (7)
C4—H4B		0.9600	C12—H	112	0.930	00
C4—H4C		0.9600	C13—C	214	1.334	4 (8)
С5—С7		1.520 (5)	C13—H	113	0.930	00
C5—C8		1.524 (5)	C14—0	215	1.374	1 (6)
C5—C6		1.526 (5)	C14—H	114	0.930	00
С6—Н6А		0.9600	C15—H	115	0.9300	
С6—Н6В		0.9600				
O3—S1—N1		112.37 (15)	H6A—	С6—Н6С	109.5	5
O3—S1—C9		104.90 (15)	H6B—(С6—Н6С	109.5	5
N1—S1—C9		96.19 (15)	C5—C7	7—H7A	109.5	5
C2—O2—C3		116.2 (3)	C5—C7	7—H7B	109.5	5
C1—N1—S1		117.2 (2)	H7A—4	С7—Н7В	109.5	5
C1—N1—H1A		111.1 (19)	C5—C7	7—Н7С	109.5	5
S1—N1—H1A		120.2 (19)	H7A—4	С7—Н7С	109.5	5
N1-C1-C2		110.4 (2)	H7B—	С7—Н7С	109.5	5
N1—C1—C5		111.9 (2)	C5—C8	3—H8A	109.5	5
C2—C1—C5		112.4 (3)	C5—C8	3—H8B	109.5	5
N1—C1—H1		107.3	H8A—4	С8—Н8В	109.5	5
С2—С1—Н1		107.3	C5—C8	3—H8C	109.5	5
С5—С1—Н1		107.3	H8A—4	C8—H8C	109.5	5
O1—C2—O2		123.9 (3)	H8B—4	С8—Н8С	109.5	5
O1—C2—C1		124.3 (3)	C10—C	C9—S1	112.7	7 (2)

00 00 01	111.0 (2)	G10 G0 H04	100.1
02—C2—C1	111.8 (3)	С10—С9—Н9А	109.1
C4—C3—O2	107.8 (4)	S1—C9—H9A	109.1
С4—С3—НЗА	110.1	С10—С9—Н9В	109.1
О2—С3—НЗА	110.1	S1—C9—H9B	109.1
С4—С3—Н3В	110.1	Н9А—С9—Н9В	107.8
O2—C3—H3B	110.1	C11—C10—C15	117.5 (4)
НЗА—СЗ—НЗВ	108.5	C11—C10—C9	121.1 (3)
C3—C4—H4A	109.5	C15—C10—C9	121.4 (3)
C3—C4—H4B	109.5	C10-C11-C12	121.0 (4)
H4A—C4—H4B	109.5	C10-C11-H11	119.5
C3—C4—H4C	109.5	C12-C11-H11	119.5
H4A—C4—H4C	109.5	C13—C12—C11	119.8 (4)
H4B—C4—H4C	109.5	C13—C12—H12	120.1
C7—C5—C8	109.2 (3)	C11-C12-H12	120.1
C7—C5—C6	109.4 (3)	C14—C13—C12	120.2 (4)
C8—C5—C6	110.6 (3)	C14—C13—H13	119.9
C7—C5—C1	111.6 (2)	C12-C13-H13	119.9
C8—C5—C1	107.2 (3)	C13—C14—C15	120.8 (5)
C6—C5—C1	108.8 (3)	C13-C14-H14	119.6
С5—С6—Н6А	109.5	C15-C14-H14	119.6
С5—С6—Н6В	109.5	C14—C15—C10	120.8 (4)
H6A—C6—H6B	109.5	C14—C15—H15	119.6
С5—С6—Н6С	109.5	C10—C15—H15	119.6
O3—S1—N1—C1	84.8 (2)	N1—C1—C5—C6	172.6 (3)
C9—S1—N1—C1	-166.3 (2)	C2—C1—C5—C6	47.8 (3)
S1—N1—C1—C2	-95.2 (3)	O3—S1—C9—C10	-179.6 (3)
S1—N1—C1—C5	138.8 (2)	N1—S1—C9—C10	65.2 (3)
C3—O2—C2—O1	-2.6 (6)	S1—C9—C10—C11	-99.0 (4)
C3—O2—C2—C1	178.3 (4)	S1—C9—C10—C15	78.2 (4)
N1-C1-C2-O1	-51.2 (4)	C15-C10-C11-C12	0.1 (6)
C5-C1-C2-O1	74.6 (4)	C9—C10—C11—C12	177.4 (4)
N1—C1—C2—O2	128.0 (3)	C10-C11-C12-C13	0.1 (7)
C5—C1—C2—O2	-106.3 (3)	C11-C12-C13-C14	0.2 (8)
C2—O2—C3—C4	178.3 (4)	C12-C13-C14-C15	-0.7 (9)
N1-C1-C5-C7	51.8 (3)	C13-C14-C15-C10	0.9 (7)
C2—C1—C5—C7	-73.1 (4)	C11-C10-C15-C14	-0.5 (6)
N1—C1—C5—C8	-67.8 (3)	C9—C10—C15—C14	-177.8 (4)
C2C1C5C8	167.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
С7—Н7В…О1	0.96	2.61	3.234 (5)	123
C9—H9B···O3 ⁱ	0.97	2.48	3.296 (5)	142
N1—H1A····O3 ⁱ	0.859 (17)	2.13 (2)	2.932 (3)	156 (3)
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1$.				

